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An adaptive TVD limiter, based on a limiter approximating the
upper boundary of the TVD range and that of the third-order upwind
TVD scheme, is developed in this work. The limiter switches to the
comprressive limiter near a discontinuity, to the third-order TVD
scheme’s limiter in the smooth region, and to a weighted averaged
scheme in the transition region between smooth and high gradient
solutions. Numerical experiments show that the proposed scheme
works very well for one-dimensional scalar equation problems but
becomes less effective in one- and two-dimensional Euler equation
problems. Further study is required for the two-dimensional scalar
equation problems. o 1995 Academic Press, Inc.

INTRODUCTION

Total variational diminishing (TVD) schemes [1-5] are one
of the most important schemes in solving hyperbolic conserva-
tion laws. For aerodynamic problems, TVD schemes have many
successful applications for use with the Euler and Navier—
Stokes equations |3]. Around the time that Harten [1, 2] pro-
posed the sufficient conditions defining TVD schemes, many
limiter functions [3--5], each having a different effect on the
solution, were developed and subsequently examined in detail.
Unfortunately, many schemes have drawbacks [4, 5], such as
the Roe minmod limiter [1, 2, 4], which tends to smear disconti-
nuities, and the Roe superbee limiter [4], which sometimes
compresses a smooth solution into discontinuity. In general,
most schemes smear the linear contact discontinuity without
Himit. For convenience, we say that a TVD limiter, such as the
superbee limiter, 1s a compressive limiter, and that a TVD
limiter, such as the minmod limiter, is a diffusive limiter. From
the point of view of solving hyperbolic conservation laws, it
is therefore advantageous to search for new limiters that retain
smoothness in the smooth solution region while compressing
discontinuities and high gradient regions, especially around a
linear discontinuity.

Generally speaking, a TVD limiter often contains a switch
that changes the scheme from one to another when some critical
conditions are present. It is intuitive to enlarge the function of
the switch so that, in addition to ensuring the satisfaction of
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the Harten TVD conditions, the TVD scheme can also retain
solution smoothnpess and discontinuity. Therefore, a solution
adaptive limiter, which is a combination of diffusive and com-
pressive TVD limiters, is the main concern of the present study.

Sweby [6] modified the Lax—Wendroff scheme by adding a
limiter, ¢, and identified the TVD range of the limited scheme
for a linear scalar equation. Note that in order to account for
the nonlinear effect and to be independent of the Courant num-
ber, this TVD range was defined conservatively. In the same
paper, numerical results showed that the compressive character
of the examined TVD schemes was proportional to the magni-
tude of ¢. As a consequence, the compressive nature of a TVD
scheme needs to be restricted to a certain extent. In fact, Roe
and Baines {4, 7. 8, 28] had already found the upper limiter of
the TVD range for the linear scalar equation {they called it the
monotonicity constraint), whose associated ¢, depends on the
CFL number and is larger than that of Sweby’s work.

In our previous studies [9-11], we had proposed two TVD
limiters which were more compressive than the superbee lim-
iter. Unfortunately. their resolution of linear discontinuity is
much less impressive than that of the Harten ENO scheme with
subcell-resolution [12, 13]. Apparently, the incompleteness of
the limiter’s switching function is responsible for such short-
comings. Therefore, in order to enhance the switching function,
the ““spirit’” of Harten’s ENO scheme will be incorporated in
this study.

ANALYSIS

In order to design an adaptive TVD limiter, we need informa-
tion on the upper limit of the TVD range. Roe and Baines [4,
7, 8, 28] had already found the limit for the linear scalar wave
equation in terms of the monotone condition. For the sake of
completeness, this study will follow Sweby’s formulation to
revisit the limit for the following nonlinear scalar wave
equation,

u, + flu), =0, (1

where u is a dependent variable, f(u) is the nonlinear flux, x
is the spatial coordinate, and ¢ denotes time. Without loss of
generality, the modified Lax—Wendroff scheme (equipped with
a limiter) can be written as
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FIG. 1. The TVD ranges of Eqs. (18) and (19) on the (¢, #) plane.
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where the limiter ¢, is obviously an anti-diffusion term, and
@iz = 1 for the original L-W scheme. Note that all the TVD
schemes based on the slope limiter (not in form of ¢ Af) can
be expressed in this form with a suitable ¢ after proper transfor-
mation [9].

Following the procedure for finding the TVD condition out-
lined in Refs, [1, 2],

TV[u"'] = TV[u"] 3
Viu'] = 2 |Ais 122", 4)

Eg. (2) can be rewritten as
Cilin Aoyt &)

nl —
uims =ui t C;+|/2 At —

Chin== {[2 = (0 = vademnllazi
+ (1 = oo inlaznltrim

A
Clip= E{[z = (1 = vodetinl|al vl

+ (1 = vuudoinlahulrint
r;iuz = AHlIZ:Iu/AHlﬂus

where the variation ratios, r*, are the slope ratios. The sufficient
conditions of scheme, Eq. (5), for satisfying the TVD condition,

Eq. (3), are
Chin=0 (6)
Ci+11‘2 + CH—].’Z - (7)
If one considers all the possible sign arrangements of q,_,s.
@iri2» And @55, the TVD range of the limiter, ¢3,,, can be

found. The non-negative TVD condition, Eq. (6), is automati-
cally satisfied, if for all ¢

N 2
Piin = T=v. {8)
— Vi
Fo 2 o, ©
Fitin

provided that ;,;, = 1. It can be proved that Eq. (7) can be
satisfied if the following conditions are fulfilled:

0= ,;1!1[2 (1 — v eianl

(10)
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FIG. 2. The limiter function comesponding to the third-order upwind

scheme which satisfies the TVD condition in the range of w(r + 3) = r =
4 - wi(l -
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constraints sufficient to satisfy the inequality of Eq. (6) can be
denoted as

23i

On the other hand, if ¢, = 0 is employed, the scheme
becomes a first-order upwind scheme (a very diffusive TVD
scheme). Therefore, it seems reasonable to take the lower limit

' + of Eq. (14) to be zero, so that 3 takes the value
ooy, B g (11
i+3/2 IB =1- Visysa (15)
by
—a= % R-U-rvaweinl=1-8 (12) Subsequently, Eqs. (13) and (14) can be rewritten as
@ 21 — vn)
It is obvious, from Egs. (9) and (11), that &« = 0 and 8 = 0. 0= r__”'zs ” ( = :’2 )
With this in mind, then, Eqs. (11) and (12) become AR i
+ 0=@hip=T—. (16)
0= GDJ_+3.'2_E 28 (13) 1= vy
rase  Paaoll — v ..
Similarly, we can get
2(B— 1) . 2 B
[*';,:;—u +2 (= #in) = @i = m (14) 0= ‘Pi—lil = 2(1 — Vi)
it Vel — Yo
Since ¢ is an anti-diffusion term, a larger value of ¢ associates 0= o= an
to a less diffusive scheme (and a more compressive limiter) = P =T Viern
[6]. In order to search for a potential TVD limiter more compres-
sive than the superbee limiter, a larger 8 value is preferrable. Consequently, the TVD range of ¢ is
. 2 21",; 1- i = . -
0= ¢f1p = min [ ; Gt e l):l , forrin>0 (18a)
1=t Fapll = V)
(Pi-l,'g = 0, for ri—[ﬂ = Q. (18b)

For a linear equation with constant wave speed, Eq. (18a)
reduces to the Roe and Baines monotonicity constraint [4, 7, 8]

2

=

2rim

OS (p,t,;.mSmm l: :|1 r{i’ll‘2>0! (}-9)

14

where ¥ = vy, = | is the CFL condition. For the sake of
clarity, these conditions are shown in Fig. 1. Note that this figure
is equivalent to the universal limiter constraints of Leonard (Fig.
A2 in Ref. [14] and Fig. 2 in Ref. [15]). Now, a TVD limiter
more compressive than the superbee limiter can be designed,
whose ¢ — r relation closely approximates the upper boundary
of the TVD range defined by either Eq. (18) or (19). Intuitively,
it seems that a TVD limiter that is more compressive than the
superbee limiter would have undesirable overcompressive char-
acteristics, which may explain why researchers have not paid
attention to this TVD region before [4, 7, 8].

In Refs. [9-11], we introduced the idea of an adaptive TVD
limiter incorporating not only a diffusive TVD limiter for use
in the regions of smooth solution, but which could also switch

to a compressive TVD limiter at appropriate locations. Obvi-
ously, the question to be addressed here relates to location.
Where should the compressive limiter be switched on, if it is
to be switched on at all? Our experience [9—11] shows that the
following rules are helpful in making this decision:

(1) A compressive limiter should be switched around a
discontinuity, such as either r5,,— 0orrj ; — .

(2) A high order accurate limiter is preferred in smooth
regions with rj;,, being located around unity.

In fact, these rules are not new. Rule (1) is similar to the first
two properties of the Roe B-function [4], while rule (2) is
similar to the third property of the B-function.

However, the compressive character of the TVD schemes
{designed in Refs. [9-11] and based on these rules) does not
give impressive resolutions for linear discontinuities. The au-
thors suspect that the compressive character of the aforemen-
tioned schemes can not be further improved by defining a
limiter function in the form ¢, = @512(r7% ) In fact, even
if ri3;» ~ 1 was found, one could not determine from the
scheme whether or not r3,,;.; — 0 or %. In other words, the
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FIG. 3. The solution to the square wave problem, using the initial condi-
tions of Eq. (37a), found by (a} the superbee TVD scheme, (b) the present
TVD scheme, Eqs. (23)-(25).

classical definitions of a limiter are not clever enough to detect
whether or not a control surface is located around a disconti-
nuity.

Harten’s subcell resolution scheme f12] and Shu and Osher’s
efficient implementation [13], based on the ENO scheme, con-
stdered all the information around the control surface of x,;,
so that no information was missed. Consequently, their schemes
could be perfected for capturing discontinuities. By virtue of
their success, we would like to propose an additional rule:

(3) If rizip ~ 1 for Qi = 0, and if either Filiaa — 0 0Or
rizsz — 0, a compressive limiter is preferred.

These rules can now be emploved in order to define a new
adaptive TVD limiter. First, consider the following high-order
scheme suitable for smooth solution regions. It can be shown
that once ¢* satisfies

JENG AND PAYNE

4’;—::112 — 1 _ 1+ i1z
r?_':l -1 3

(20)

the modified Lax—Wendroff scheme, Eqg. (2), becomes a third-
order scheme. Moreover, it can also be shown that, for the
linear case with constant wave speed, the third-order scheme
satisfies TVD conditions within the region

(21)

By virtue of rule (2), therefore, the third-order upwind scheme
of Eq. (20) can be employed within this range of r, as shown
in Fig. 2.

In order to determine the region in which the compressive
limiter should be switched on, either the Harten criterion [12]
or the Shu and Osher criterion [13] is a good candidate. In
this study, the latter criterion is employed, resulting in the
identification of a discontinuity at the critical interval f{x;-,5,
Xi1152), where
and

5= Sixy R

5 = |mlGeer = w), (o = w0, (22)
where m(-, *) denotes the minmod function. Note that this
criterion satisfies rules (1) and (3) simultaneously. In sum-
mary, for positive wave speed at the i-cell, the limiter takes

the form

®in = 0, ifrie=0
. 2ry 2 ) (23)
= i I:(,tlﬁuz,_‘j_l'g,—_:’, 1fr;1,2>0,
iz 1~ Van
where
2 . . o
b =—""7, if Eq. (22) is satisfied
e
(24)
1+ gin—1 .
-1+ ( T i ), otherwise. (25)

3

Equations (23)—(24) state that, if a discontinuity exists in the
ith cell, then the upper boundary of the TVD region should be
chosen as the TVD limiter, regardless of whether = ~ 1 or
not. However, if no disconlinuity exists, then a third-order
scheme (say Eq. (25)) should be employed.

Note that the subcell resolution schemes of Ref. [12-13] are
constructed on the basis of the ENO scheme. Although the
critical interval defined in Eq. (22) may only be a smooth
inflection point, the integration procedure for such schemes can
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FIG. 4, The solotion to the problem using the initial conditions of Eq. (37b), found by (a) the present TVD scheme using Eqgs. (23)~(25), (b) the third-
order upwind TVD scheme, (c) the adaptive TVD scheme, Eqgs. (23), (26)—(28),and X = 1, @, = 0.1, Aw = 0.05, and » = 0.5; (d) the adaptive TVD scheme,
Egs. (23), (26)-(28), and K = 1, w, = 0.1, Aw = 0.05, and v = 0.4.

casily recover the necessary smoothness. However, since the i = oy,
present method does not contain any smoothing process, the 4= v Y
method proposed in Eqs. (22)—(25) might compress a smooth if riian > —1_—1’#, rtin < 3—;1—’2— (26)
solution into a high gradient solution, if the discontinuity switch B P
is interpreted incorrectly. In order to avoid such a possibility, =1 —wd + wd,
the magnitude Auf/Aut,, and the slope ratios r-,, and Fiian 4= vup Visinz
are employed to decide in the smooth region. Therefore, a better if risn > Tvﬁ orrfp < m, (27)
expression for the ¢:1» term of Egs. (24)—(25) is: if Eq. (22)
is satisfied and max[|A,_,pu”|, |Aipun], |Asspu®|], then otherwise,
b = ¢, if Eq. (22) is not satisfied, or 28)
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FIG. 5. The proposed TVD scheme’s (Egs. (23), (26), (28)) solution to
the third problem, using the initial conditions of Eq. (37¢) at {a) + = 2, with
v = 0.8, and 100 uniform grid points; (b} ¢ = 20, with » = 0.8, and 100
uniform grid points.

where K (ranged from | to 3), w,, and Aw are user-specified
constants. The magnitude | Au”|near is introduced to avoid having
a smooth solution considered to be a discontinuity. The modifi-
cation in Eq. (26} states that the flux at x = x.,, around a
discontinuity should be equipped with the compressive limiter
only if {Airspu”| <€ | Ayyou7| and |A, 50" <€ |Aj pu|. Although
this works very well in the examples given in the present study,
such a modification might still consider a smooth inflection
point to be a shock.! To avoid such a setback, one may tune
the criteria to be rin > k{4 — w1 — vop) and roe
< (V) (¥n12) (3 + viu), where k) and k&, are scaling con-
stants. The modification of Eq. (27) is suitable for the transition
region between smooth and high gradient solutions.

' The authors are grateful 1o one of the referees who pointed out this fact.
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Across from a local extreme point, most TVD schemes are
reduced to first-order accuracy because of Eq. (18b). Such a
reduction frequently leads to the so-called clipping effect
around an extreme point. In order to remedy this problem,
Lenord and Niknafs [15] proposed an extreme point corrector,
and this idea was added to the system equation case by Jeng
et al. [11, 16]. The corrector of Ref. [15] identifies an extreme
point as a numerical osciliation whenever the second-order
differences change sign across from the point. In order to avoid
numerical oscillation around a discontinuity, the extension of
Refs. [11, 16] adds an asymmetric factor which considers ex-
treme polnts next to a discontinuity as numerical oscillation.
Once gn extreme point is recognized as a numerical oscillation,
the TVD limiter is preserved. Otherwise, the limiter is switched
off for several neighboring control surfaces. In this study, the
modified extremum cotrector is employed.

As the proposed TVD limiter is applied to two-dimensional
scalar wave equations, the directional operator splitting approxi-
mation is employed [1, 4, 17]. For the one-dimensional Euler
equation problem, the Roe approximate Riemann solver [18]
and the Coakley eigenvalue splitting approximation [19] are
employed. Because the above two methods are simplified forms
of the following two-dimensional Euler equations problem, they
are not shown here. It is casily shown that the Coakely splitting
introduces intrinsic dissipation at the sonic point {9, 20]. Al-
though this is not proven to be an E-scheme, our numerjcal
experiments show that the expansion shock has yet to be found.

For two-dimensional problems, the two-dimensional Euler
equations in conservative form are

U, AFU) | 3G(U) _

, 29
ar | ax a0 (29)
where
P pu U
pu put +p Py
U= . F= . G= 5 (29b)
pU puuv puc+p
e ule + p) v(e + p)

in which p is the density, ¢ and v are the velocity components
in x- and y-directions, respectively, and p is the pressure. The
total energy per unit volume e is related to p by the equation
of state for a perfect gas,

p=(y — Dle — p(® + v*)/2]. {29¢)
Define

F=AyF, G=AxG

0=-0, A:%, ﬁ=£, (30)



AN ADAPTIVE TVD LIMITER

235

121 124
1.0 1.0
0.8- 0.8
0.6 0.6
0.4+ 0.4 -
0.2 0.2
-  0.04 = 0.0+
=02 =0.2
—0.4 - -0.4 4
=0.8 -0.6 -
0.8 0.8
-1.0 1.0
-1.2 T T v T T | -1.2 T T T T T ]
-1.2 -0.8 =04 0.0 0.4 0.8 L2 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
X X
1.2
o]
0.8+
0.6
0.4+
0.2
= 0.0+
-0.2 4
-0.4 -
-0.6
-{.8
-1.04
-1.2 T T T T 1
-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

F1G. 6. The proposed TYD scheme’s (eqgs. (23), (26), (28)) solution to the Burgers equation, using the initial conditions of Eq. (38} (a} hefore the formation
of the shock wave, ¥ = (1.8; (b) after the formation of the shock wave, » = (.8; {c) after the formation of the shock wave, v = (.2.

where 1/J = Ax Ay is area of the cell. Let eigenvalues of A,
B be &, &, respectively, where [ = 1, 2, 3, 4, Denote R and
R as the matrices whose columns are right eigenvectors of A
and B, respectively, and R~ and R~ are their corresponding
inverse matrices. After employing the Roe approximate Rie-
mann solver and the Coakley eigenvalue splitting, the one-
parameter family of TVD schemes for Eq. (29) on the Cartesian
grid system become

02 + At GIF3 e — Bty
+ Ar d[Grilin — Gl
=05, — Al — AF0s ~ FL ]
— Al — PGz — Gnl.

(31a)

where

- i n .
Fj+1:’2.k = 2[Fj+1.i + Fj,k + Rj+l.’2.k j+l.'2.k]

Gj.sz = %[Gj,ku + Gj.k + Rj,k+h‘2 j.k+l.'2] (31b)
in which @, ;;; and P, are the dissipation terms in the x-
and y-directions, respectively. In this study, ¢ = % is employed
to get the second-order accuracy in time. The dissipation along
the x-direction is

— ~ + +a
(I)j+11'2,k = (_lAj+ll2.k|aj+l.'2.k + Aj+1/2,k€0 O 2k

(32)

- AJ:} VN, 2 ﬁ'-j+3,’2.k)

a}-}-l.’lk + ]aj!+l.'2.k|

Ay = diag { 2 } = diag{(a;5.12.0)}

- . 1 + sgnlaiing o
Al = diag {% a}—uu = dlag{(aﬁuz,t)l}
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< {1 = sgn(alin) o
Ajispy, = diag {_ZJ—W a}+3.’2,k = dlag{(a_ﬁa/z.k)',}

~

1 - . N
Qi = j Rﬁ-‘i.'z,k(UjH.k - Uj,k)s

where |A ;| is a diagonal matrix with element |aly,,|'s and
¢ are diagonal matrices with elements ¢’. Note that ¢’ are
similar to those specified in Eqgs. (23), (26)—(28), provided that
proper modifications are made. For example, | Ast|na and | Az |ean
are modified to be the maximum and mean values of the compo-
nents, @l imes and |@li124lmes. tespectively, for all j and .
Here, we denote the slope ratios as

H !
Aj-1124 Xk
ll k]
12k

(”ﬂm‘k)l = (r.}tlfz,k)t = (33)

!
[L4ERT N

The expression of @, ;. ,, is similarly defined. ﬁjil nand I"J}-,k._,l n
in the above equations are evaluated by Roe’s average [18].

JENG AND PAYNE

The implicit scheme of Egs. (31)~(33) is solved by the fol-
lowing iterative method (similar to the Newton—Raphson
method) so that both transient and steady-state calculations are
suitable [1, 3, 21],

803 + Ar p[6¢(A1, 80 + 8By, 501))
=0r, — Ug, — Ar p[5¢F9, + 67GY,]
— At (1 — Q& + 87Gy,

(34)

where &jf_@ = ﬂfﬁl - ﬁfk, afﬁ_ﬁk = [F,?Hflir - Ff—lfz,t], 5“&7{;— =
(Gt — G, ete. The superscript ¢ is an index of subitera-
tion. If the subiteration is converged, U¢ ~ 07! = 0. In
order to apply the tri-diagonal solver of the system equation
of the ADI {(alternative direction implicit) method [21], the
dissipations @ in ¥ and G are properly interpreted so that the
terms of §%(+) and 57%(+) in the left-hand side of Eq. (34) become
the first-order upwind differencing. After applying the linear-
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127 If the maximum residue is reduced by more than three orders
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0.8
ey RESULTS AND DISCUSSIONS
2 0.6+ . .
g The first test problem employs the linear scalar equation
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FIG.9. (a)Density contours of the exact solution at ¢ = 0.0509. (b) Energy X
contours of the exact solution at 1 = 0.0509.
3.0 -
. . o _ ~ s
ized conservative approximation and the ADI approximation -
to the implicit part, Eq. (34) takes the form [21] 13 2.7 N )
(I + At ¢HE 1504 — At ¢HE 13- ID* = RHS E 24 ]
I+ At ¢Hj7,'k+l.'2' —At ‘bHﬂk—liz D = D#* (35a) E
N .. 2.1
UqH =i+ D. - Rocvumsaoear;
where 1.8
Hf —l A 7+ Q§ q L5 — T T T LS T T T 1
kT T 2 [( j+l.k) ({ J+|.'2,k) 1 00 o1 0.2 03 04 05 068 07 08 0.8 L¢
| X
7 = — . g n i1 .
H"‘Hl’lz 2 [(ﬁ”‘ﬂ) + (ﬂf‘kﬂﬂ)] (33b) FIG. 10. (a) The resulting density contours of employing the superbee
) limiter to the Sod shock-tube problem, with initial conditions of Figs. 9a—b,
i = dlag(—max(laq))jﬂ,z_k Aiip v = 0.8 t = D.2021. (b) The resulting energy contours of employing the

superbee limiter 1o the Sod shock-tube problem, with initial conditions of Figs.

ﬂfkﬂfz = diﬂg(_max(la!l))j,ﬁ+1fz Aisinze 9a-b, r = 0.8, r = 0.2021.
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FIG. 11. (a) The resulting density contours of employing the proposed
TVD scheme (Eqgs. (23), (26). (28)) 10 the Sod shock-tube problem, with initial
conditions of Figs. 9a—b, » = (.8, t = 0.2021. (b) The resulting energy contours
of employing the proposed TVD scheme (Eqs. {(23), (26), (28)) to the Sod
shock-tube probiem, with initial conditions of Figs. %a-b, v = 0.8, = 0.2021.

(the first two are used in Ref. [22], and the third is used in
Ref. [23]):

wxy=1, |x|=02
=0, otherwise (37a)
I 2105
u(x) = [1 - (%) ] , |xl=<03
=0, otherwise (37b)
. {37x? 1
o) = —X. — =7 - — =
w(x) xsm( > ) l=x= 3
= sin27x)|, |x] <3
=2x—1—S‘—"(g”—"), %<x<l. (37¢c)
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Figure 3a depicts the exact solution as well as the result of
a TVD scheme (equipped with the superbee limiter) that em-
ploys the initial condition of Eq. (37a). For convenience, the
numerical solutions in this study are illustrated by open circles,
while the exact solutions are sketched using solid lines. An
examination of this figure clearly indicates that the superbee
limiter is not compressive enough to capture the linear disconti-
nuity within two points. Figure 3b illustrates the results of the
present TVD scheme equipped with the extremely compressive
limiter of Egs. {23)—(25), which is better than the associated
solutions in Ref. [13]. Subsequent sclutions, which employ
different CFL numbers and/or employ the modified limiter
(replacing Egs. (24)—(25) with Egs. (26)—(28)), also demon-
strate the same result.

Figure 4a illustrates both the exact solution and the over-
compressive result which employs the compressive limiter of
Eq. (24) with the initial conditions of Eq. (37b). It should
be noted that the superbee limiter gives a different type of
overcompressed solution when used alone. If the third-order
upwind TVD scheme (whose ¢ = Min(¢, of Eqg. (28), 2, 2r™)),
which is similar to the Charkravarthy and Osher third-order
upwind TV} scheme [24], is employed, discontinuities at the
left and right cormers are smeared as shown in Fig. 4b. After
employing the modified limiter of Eqgs. (26)-(28) (with p =

FIG. 12, (a) The resulting solution of employing the proposed limiter of
Eqgs. (23)-(25) to the two-dimensional scalar linear wave equation with initial
conditions, Egs. (332)-(331). (b) The resulting solution of employing the
superbee limiter o the two-dimensional scalar linear wave equation with initial
conditions, Egs. (33a)-(33b).
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05 K =1, w =01, and Aw = 0.05) and the extremum
corrector, the overly compressed result, and the clipping effect
at the extreme point do disappear (see Fig. 4¢). Slightly more
diffuse resolutions around the lower corners of Fig. dc (as
compared to Fig. 4a) are unavoidable side effects resulting
from the release of the overcompressive character (because Eq.
(27, instead of Eq. (26), is employed). The solution around
the lower comers is better than that in Ref. [13], while the
solution along two vertical lines is slightly worse than the
solution of Ref. [13]. In this case, most of the solution is nearly
identical with respect to the CFL number, except that the corners
become shightly more diffuse as the CFL number takes a smaller
value (see Fig. 4d with p = 0.4, for example).

The various solutions to the problem that results from using
the third initial conditions all demonstrate sintilar characteristics
and, thus, need not be compared. Solutions shown in Figs. 5a
and b are the results of the wave after it has traveled to times
1 = 2 and 20 with » = 0.8 and 100 uniform points, respectively,
where the solid lines are the exact solution. Note that these
solutions are in complete agreement with each other, except
that the exirema become slightly more smeared as the CFL
number becomes smaller, and that they are clipped differently
as the marching proceeds. Also note that the clipping effect
can not be effectively deleted because, at the early stages, the
employed extremum corrector identifies all the extreme points
as extreme points around discontinuities. Consequently, the
result is worse than that in Ref. {13].

The next test case employs the scalar nonlinear Burgers
equation,

w+un, =0, —l=x=1,
t=0, u(,x)= —sin(zx) (38)
1>0, ult, "D=u@1)=0.

Using a 40 uniform mesh and a CFL value of (.8, the results
Jjust before and just after the formation of a shock are given in
Figs. 6a and b, respectively. These figures clearly show that
the nonlinear discontinuity, as well as the smooth region, are
both captured very well, Figure 6c shows the result before
the formation of the shock with a CFL value of 0.2, which
demonstrates that a smaller CFL number has a slightly more
diffusive result. As the shock is formed, the result is nearly
insensitive to the CFL number. Since the CFL number has a
similar effect on all the test cases, we will not discuss this
effect below.

An example of the one-dimensional system equation problem
is the Sod shock-tube problem {25], whose initial conditions are

U= [p., uLspL]T =11,0, 1},
= [pg, ug, pr)’ = [0.125,0, 17",

if0=x=05, (3%a)

if0.5=x<1. (39b)

A uniform grid consisting of 100 uniform intervals was used.
The numerical solutions were performed up to ¢ = (.2 with
the CFL number taking the value of 0.8. The resulis of em-
ploying the superbee limiter are shown in Figs. 7a and b, while
the results of employing Egs. (23), (26)—(28) are shown in
Figs. 8a and b. Compared with results of the superbee limiter,
Figs. 8a~b show that, although the shock wave is resolved
very well, postwave oscillation is found around the contact
discontinuity wave. This is due to insufficient dissipation of
the proposed adaptive limiter. Note that at the very beginning,
the expansion wave, the contact surface, and the shock wave
are ¢lose to each other and an adequate dissipation is required.
For example, consider the exact solution at 1 = 0.0509 as the
initial condition, where these waves are separated by a large
enough number of grid points, as shown in Figs. 9a and b.
The solution of the present limiter (Figs. ila and b) resolves
discontinuity very well, as can be seen by a companson with
those of the superbee limiter (see Figs. 10a and b). Therefore,
it seems that further investigation on this issue is necessary.

The following problem is that of the two-dimensional scalar
linear wave equation problem with a constant wave speed, a =
i + j. The initial conditions are

V2
2

“(i].j =1, if[xi‘j + )’:‘,j( = (40a)

2
y [xi‘j - )’f,j[ B

2 ]

=0, otherwise. {40b)
After computing for 800 steps with » = 0.1 and Ax = Ay =
0.1, the result of employing the limiter of Eqgs. (23)~(25) (and
also that of Eqgs. (23), (26)—(28)) is shown in Fig. 12a. The
result of employing the superbee limiter is shown in Fig. 12b.
Since the present limiter is more compressive than the superbee
[imiter, the result of the former is better than that of the latter.
However, for smooth inijtial conditions, the compressive charac-
ter of both limiters compresses the solution to more and more
blockwise distributions which are not shown here. In other
words, the elements for constructing an adaptive TVD iimiter
for two-dimensional scalar equations should be shified 1o those
limiters with more diffusive characters.

Finally, the compressive TVD limiter is applied to an inviscid
supersonic wind tunnel problem [26], whose result is shown
in Fig. 13a. The problem begins with uniform Mach number
3 flow in an inviscid wind tunnel containing a step. The wind
tunnel is 1 length unit wide and 3 length units long. The step
is 0.2 length unit high and is Jocated 0.6 length units from the
left-hand end of the tunnel, and the tunnel is assumed to be
two-dimensional. All the boundary conditions at the left are
specified by inflow Dirichlet conditions, and at the right all the
gradients are assumed to vanish. Initially, the wind tunnel is
filled with a gamma-law gas with y = 1.4, which everywhere
has a density of 1.4, a pressure of 1.0, and a velocity of 3, and
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FIG. 13. (a)} The resulting density contours of employing the implicit TVD
scheme to the supersonic wind tunne! problem, 1 = 4.0, with v,, = 2, Ap =
(116, and 04501 = p = 6.301. {(b) The PPM solution (density contours) at
t = (1.4, Ref. [27].

is continuously fed from the left-hand boundary. Along the
tunnel wall, reflecting boundary conditions are applied. The
corner of the step is the center of a rarefaction fan and, hence,
is a singular point. In the first four zones (the first row of cells
just above the step) starting from the right of the comer of the
step, the density values are reset so that their entropy values
are equal to that in the cell just to the left and below the comer
of the step. Note that the region of reset is smaller than the
reset in Refs. [26, 27] because the Coakley splitting induces
intrinsic dissipation.

Figure 13a is the result of the adaptive TVD limiter at r =
4.0 employing 121 X 41 uniform grid points (¥, = 2, @, =
0, Aw = 1) and 1s comparable to the PPM solution of [26, 27]
(Fig. 13b). The slip line is first slightly sharper than that in
the PPM solution and then becomes slightly more smeared
downstream. On the other hand, the oblique shock induced by
the reattachment of the fluid turning around the corner of the
step is stronger than that in the PPM solution.

In summary, it seems that the proposed adaptive himiter 1s
suitable for the scalar one-dimensional hyperbolic conservation
law. For cases governed by one-dimensional system equations,
the limiter is a good scheme to resolve isolated discontinuities.
For the two-dimensional scalar equation problems, as Roe
pointed out [28], results for a two-dimensional problem deterio-
rate as the solution of the associated one-dimensional scalar
equation problem improves. However, the result for a two-
dimensional Euler equation problem is acceptable.

JENG AND PAYNE

CONCIL.USIONS

The TVD range of the explicit modified Lax—Wendroff
scheme for scalar wave equations was revisited. The upper
limit of the TVD range for a scalar linear wave equation is
equal to the upper boundary of the monotonicity constraints of
Roe and Baines. Subsequently, an adaptive TVD limiter, which
is a combination of the third-order upwind TVD scheme and
a compressive TVD limiter, was designed. Numerical tests
proved that the proposed method resolves linear and nonlinear
scalar discontinuity and smooth solution very well. An accepi-
able result is also found for a two-dimensional Euler equation
problem. However, for the one-dimensional system equations
and two-dimensional scalar equations cases further investiga-
tions are necessary.
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